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Nuclei in the valley of stability are usually treated as a fluid made of nucleons with sphere-like
geometry in their ground states. However, correlations between nucleons and cluster formation play more
important roles in excited nuclei. For light excited a-conjugate (even-even N=Z) nuclei, the importance of
a clusters is apparent in both theoretical calculations and experimental observables.

Wheeler suggested that nuclear liquid can assume toroidal shapes under certain conditions [1].
Wong et al. quantitatively discussed where the existence of a toroidal nucleus and its stability against
sausage deformation [2, 3]. In light a-conjugate nuclei the a particle can be expected to be important in
the toroidal configuration which leads to a reduced nuclear density. Heavy ion collisions induced by light
a-conjugate nuclei may provide the appropriate conditions to access toroidal isomers with high angular
momentum and excitation energy. The toroidal isomer may manifest itself by decaying into a particles
or a-like fragments (where the a-like fragments refer to a, 12C, 16", and *°Ne etc.). Therefore, an
experimental exploration with special attention and methodology into observing a-like decays is indicated
and very intriguing.

A series of experiments were carried out at Texas A&M University Cyclotron Institute with *’Ca
and 2*Si beams at 10, 25, 35 MeV/u provided by the K500 superconducting cyclotron incident on **Si,
12C, “Ca, and '*'Ta targets [4], respectively. The combinations with different a-conjugate projectiles (**Si
and *’Ca) and targets ('>C, **Si, and **Ca) may favor population of different a cluster states. The reaction
products were detected using a 4 array, NIMROD-ISiS (Neutron lon Multidetector for Reaction
Oriented Dynamics with the Indiana Silicon Sphere), which consisted of 14 concentric rings covering
from 3.6° to 167° in the laboratory frame. In addition, the neutron ball surrounding the NIMROD-ISiS
charged particle array provided information on average neutron multiplicities for different selected event
groups. The preliminary analysis of parts of the raw data was accomplished by C. Bottosso, E-J Kim, and
K. Schmidt et al. [4] and some interesting preliminary results about the a-like mass (Almass) emission
have been obtained for *°Ca+*Ca [5]. Here we focus on cluster decay from **Si and check its dependence
on '2C, *Si and "*'Ta targets [6].

For the **Si+'*C reaction, a total of 17 million events were recorded and a significant proportion
of events have significant alpha-like mass emission. Half a million events have Almass=28. There are 7
alpha-like decay channels with Almass=28 as shown in Fig. 1. For the most interesting event group: 7 o
decay channels, more than 10 thousand events are obtained.
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FIG. 1. The proportion of decay channels for Almass=28 from **Si+'*C @ 35MeV/u.

The hierarchy effect, which refers to a correspondence between fragment mass and parallel

velocity, was found for a-like fragments from **Ca decay [5]. For most of the **Si channels this hierarchy

effect is also observed. The angles between o and heavier fragments are shown in Fig. 2. The as tend to
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FIG. 2. The emission angle between a and heavier fragment for the a-like decay channels. For the 7 o channel,
the angle is calculated between center-of-mass velocity and the velocity of a particles.
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be emitted backward relative to the large fragment, indicating they mainly come from the neck region.
This means absence of complete equilibrium of the a-like emission source.

In order to explore the configuration of the possible toroid formed in the dynamical stage, we
utilize a shape analysis technique to diagnose the source shape in momentum space [7]. Shape analysis is
a popular method to study emission patterns of sources, dynamical aspects of multifragmentation and
collective flows of particles in relativistic heavy ion collisions. A tensor constructed on the momenta can

be written as: T;; = N . p! p}’, where N is the total nucleon number, p; is the momentum component

of V™ nucleon in the center-of-mass and i refers to the Cartesian coordinate. The tensor can be
diagonalized to reduce the event shape to an ellipsoid. The eigenvalues of the tensor: A;, 4,, and A3,

normalized by: 4; + A, + 43 = 1 and ordered according to: 4; < A, < A3 , can quantitatively give

shape information of the events. The sphericity is defined as: § = 2 (1 — A3), and coplanarity is defined

as: § = ? (A, — 4;). In the sphericity-coplanarity plane, the ideal rod, disk and sphere events exactly

locate at the three vertexes of the triangle: (0,0) (3/4, V3 /4), and (1,0), respectively. A schematic figure
of shape analysis is shown by Fig. 3.
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FIG. 3. A schematic figure illustrating the shape analysis method, where the 6 and distance
definitions are used in Fig. 5.

The results of the shape analysis are shown in Fig. 4. events. Two fragments will always have a
rod shape in momentum space while three fragments can form a plane or rod shape. We can see there are
always some events located around the disk point, which may be the toroidal candidates, especially for
the 7 o channel.
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FIG. 4. Shape analysis of sources decaying by Almass.

We extract the excitation energy of source decaying by Almass by scanning around the rod-disk
line. The extracted excitation energy is shown in Fig. 5, with cut labeled: § € [0,0.05] and distance €
[0.4,0.6], where the & and distance are defined in Fig. 3. For our most interesting channel: 7 o, there are
several peaks near the 143.18 MeV energy predicted by Staszczak and Wong’s [3]. They predicted this to
be a 44 h **Si isomer corresponding to a toroidal configuration. The 6 a and 8 a channels are included for
comparison. For the 6 a channel, there are no obvious peaks. For the 8 a channel, at least one o would
have to come from the target-like fragment (TLF). The statistics are low and this suggests that the 7 a we
analyzed may be relatively free of contributions from decay of the target-like fragment (TLF).
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FIG. 5. Excitation energy of Almass source with cut on sphericity-coplanarity plane.

A determination of the angular momentum of Almass source is necessary to pin down the toroidal
candidate. Such a determination is difficult. Antisymmetrized molecular dynamics (AMD) simulations

are in progress.
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Similar results are seen for the 28S+288i, and 2*Si+"*'Ta systems at 35MeV/u. However, the
statistics for the **Si+'*!Ta reaction is much lower than for the other two systems.
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